Compute \(\hat{H}^{(n)}_{h\hat{\lambda}^{(i)},1}\) in the centered DFT
Source:R/H.h.lambda.1.R
H.h.lambda.1.Rd
This function computes $$\hat{H}^{(n)}_{h\hat{\lambda}^{(i)},1}(\boldsymbol\omega) = \int_{D_n}h(\boldsymbol{x}/\boldsymbol{A})\hat{\lambda}^{(i)}(\boldsymbol{x}) \exp(-i\boldsymbol{x}^\intercal\boldsymbol\omega)d\boldsymbol{x}$$ for the \(i\)th point process, \(i\in\{1,2,\ldots,m\}\).
Arguments
- w1, w2
A numeric value or vector of frequency values at horizontal and vertical directions, respectively.
- a
Taper coefficient, a value within \((0,1/2)\). If
a = 0
, then taper is not applied, i.e., \(h(\boldsymbol{x}/\boldsymbol{A}) = 1\).- taper
Data taper function \(h\).
- A1, A2
Side lengths of the observation window.
- inten.fitted
Fitted intensity function of individual point pattern, \(\hat{\lambda}^{(i)}(\cdot)\).