This function computes the estimator of the spectrum for a intensity reweighted point process \(\widehat{\mathcal{F}^{-1}(L_2)}(\boldsymbol\omega)\), which is used to calculate the coherence and partial coherence. $$\widehat{\mathcal{F}^{-1}(L_2)}(\boldsymbol\omega) = H_{h,2}\left(\hat{ F}_b(\boldsymbol\omega)-(2\pi)^{-2}H^{-1}_{h,2}\text{diag}(H_{h^2\underline{\hat \lambda}})\right)\oslash H_{h^2\underline{\hat\lambda}\cdot\underline{\hat \lambda}^\intercal}$$
Arguments
- w1, w2
Frequency vector (only allow frequency values evaluated in
sp.est
)- sp.est
A list of kernel spectral estimate matrices of the point pattern.
- i, j
Optional. Index of the multivariate point process.
- H.list
Optional. A list from
Hmatrix()
.- ppp
Point pattern.