Skip to contents

This function computes the estimator of the spectrum for a intensity reweighted point process \(\widehat{\mathcal{F}^{-1}(L_2)}(\boldsymbol\omega)\), which is used to calculate the coherence and partial coherence. $$\widehat{\mathcal{F}^{-1}(L_2)}(\boldsymbol\omega) = H_{h,2}\left(\hat{ F}_b(\boldsymbol\omega)-(2\pi)^{-2}H^{-1}_{h,2}\text{diag}(H_{h^2\underline{\hat \lambda}})\right)\oslash H_{h^2\underline{\hat\lambda}\cdot\underline{\hat \lambda}^\intercal}$$

Usage

IRspec(w1, w2, sp.est, i = NULL, j = NULL, H.list = NULL, ppp)

Arguments

w1, w2

Frequency vector (only allow frequency values evaluated in sp.est)

sp.est

A list of kernel spectral estimate matrices of the point pattern.

i, j

Optional. Index of the multivariate point process.

H.list

Optional. A list from Hmatrix().

ppp

Point pattern.

Value

If both i and j are not specified (default), return a \(m \times m\) matrix. If they are specified, return a value.