Given a multivariate point pattern \(\underline{X} = (X_1, \ldots, X_m)\),
compute the periodogram for \(X^{(i,j)}\). The indices i and j denotes
the \(i\)-th and \(j\)-th individual point process (\(i,j\in\{1,2,\ldots,
m\}\)). If the point pattern ppp is univariate (\(m=1\)), then set i = 1
and j = 1 to compute the periodogram.
Usage
periodogram(
i,
j,
ppp,
inten.formula = "~1",
data.covariate = NULL,
a = 0.025,
return.DFT = FALSE,
A1 = NULL,
A2 = A1,
ext.factor = NULL,
endpt = 1.5,
generate_freq. = generate_freq,
taper. = taper,
H.h.lambda.1. = H.h.lambda.1
)Arguments
- i
Mark index. An element in
levels(spatstat.geom::marks(ppp)).- j
Mark index. An element in
levels(spatstat.geom::marks(ppp)).- ppp
A point pattern of class
"ppp".- inten.formula
A
formulasyntax in character format specifying the log-liner model for the intensity function, which is passed toppm(). The default is constant intensityinten.formula = "~1".- data.covariate
Optional. The values of spatial covariates passed to the
dataargument inppm().- a
Taper coefficient, a value within \((0,1/2)\). If
a = 0, then taper is not applied. Default isa = 0.025.- return.DFT
If
TRUE, also return the centered discrete Fourier transform (DFT).- A1, A2
Optional. Side lengths of the observation window.
- ext.factor
Optional. If
NULL(default), the frequency grid for the periodogram is not extended. Please keep thisNULLunless you know what you are doing.- endpt
A positive value indicating the scale factor of the endpoint frequency.
- generate_freq., taper., H.h.lambda.1.
Functions in their respective .R files.