Kernel spectral estimator of a multivatiate (multitype) point pattern
Source:R/estimator.R
periodogram_smooth.Rd
Computes the kernel spectral estimator for a multivatiate (multitype) point pattern.
Usage
periodogram_smooth(
ppp,
i = NULL,
j = i,
inten.formula = "~1",
data.covariate = NULL,
bandwidth,
correct = TRUE,
a = 0.025,
A1 = NULL,
A2 = A1,
endpt = 1.5,
equal = TRUE,
kern = bartlett_uni
)
Arguments
- ppp
A point pattern of class
"ppp"
.- i
Mark index. An element in
levels(spatstat.geom::marks(ppp))
.- j
Mark index. An element in
levels(spatstat.geom::marks(ppp))
.- inten.formula
A
formula
syntax in character format specifying the log-liner model for the intensity function, which is passed toppm()
. The default is constant intensityinten.formula = "~1"
.- data.covariate
Optional. The values of spatial covariates passed to the
data
argument inppm
.- bandwidth
A positive value indicating the bandwidth of kernel, determined by
select_band()
.- correct
Logical. If
TRUE
(default), conduct edge correction when computing the kernel spectral estimator.- a
Taper coefficient, a value within . If
a = 0
, then taper is not applied. Default isa = 0.025
.- A1, A2
Optional. Side lengths of the observation window.
- endpt
A positive value indicating the scale factor of the endpoint frequency.
- equal
Logical. If
TRUE
, then use the same bandwidth for both x and y direction.- kern
Univariate scaled kernel function. The default is Barrlett kernel.
Details
The minimal required arguments are ppp
, inten.formula
, and bandwidth
.
If you use any spatial covariate other than the Cartesian coordinates in inten.formula
, then
data.covariate
is also needed. All the other arguments can be left by default setting.
periodogram_smooth()
computes all the pairwise (marginal and cross-) kernel
spectral estimators automatically when the mark indices i
and j
are
unspecified. If i
and j
are specified, then it only computes the result
for that mark combination.
The bandwidth can be determined by select_band()
.
Examples
library(spatstat)
lam <- function(x, y, m) {(x^2 + y) * ifelse(m == "A", 2, 1)}
spp <- rmpoispp(lambda = lam, win = square(5), types = c("A","B"))
# Compute kernel spectral estimator with intensity fitted by log-linear model
# with Cartesian coordinates
ksde = periodogram_smooth(spp, inten.formula = "~ x + y", bandwidth = 1.2)
lapply(ksde, round, 2)
#> $`A, A`
#> -4.71238898038469 -3.76991118430775 -2.82743338823081
#> -4.71238898038469 0.20 0.40 0.54
#> -3.76991118430775 0.54 0.38 0.85
#> -2.82743338823081 0.54 0.36 0.85
#> -1.88495559215388 0.52 0.41 0.32
#> -0.942477796076938 0.57 0.98 0.61
#> 0 0.50 0.85 0.56
#> 0.942477796076938 0.43 0.75 0.50
#> 1.88495559215388 0.23 0.50 0.68
#> 2.82743338823081 0.24 0.31 0.34
#> 3.76991118430775 0.33 0.27 0.22
#> 4.71238898038469 0.33 0.51 0.84
#> -1.88495559215388 -0.942477796076938 0 0.942477796076938
#> -4.71238898038469 0.31 0.31 0.25 0.22
#> -3.76991118430775 0.87 0.37 0.22 0.19
#> -2.82743338823081 1.19 0.55 0.34 0.44
#> -1.88495559215388 0.39 0.49 0.37 0.31
#> -0.942477796076938 0.46 0.88 0.32 0.27
#> 0 0.62 0.58 0.23 0.58
#> 0.942477796076938 0.32 0.27 0.32 0.88
#> 1.88495559215388 0.23 0.31 0.37 0.49
#> 2.82743338823081 0.23 0.44 0.34 0.55
#> 3.76991118430775 0.18 0.19 0.22 0.37
#> 4.71238898038469 0.56 0.22 0.25 0.31
#> 1.88495559215388 2.82743338823081 3.76991118430775
#> -4.71238898038469 0.56 0.84 0.51
#> -3.76991118430775 0.18 0.22 0.27
#> -2.82743338823081 0.23 0.34 0.31
#> -1.88495559215388 0.23 0.68 0.50
#> -0.942477796076938 0.32 0.50 0.75
#> 0 0.62 0.56 0.85
#> 0.942477796076938 0.46 0.61 0.98
#> 1.88495559215388 0.39 0.32 0.41
#> 2.82743338823081 1.19 0.85 0.36
#> 3.76991118430775 0.87 0.85 0.38
#> 4.71238898038469 0.31 0.54 0.40
#> 4.71238898038469
#> -4.71238898038469 0.33
#> -3.76991118430775 0.33
#> -2.82743338823081 0.24
#> -1.88495559215388 0.23
#> -0.942477796076938 0.43
#> 0 0.50
#> 0.942477796076938 0.57
#> 1.88495559215388 0.52
#> 2.82743338823081 0.54
#> 3.76991118430775 0.54
#> 4.71238898038469 0.20
#>
#> $`A, B`
#> -4.71238898038469 -3.76991118430775 -2.82743338823081
#> -4.71238898038469 0.05+0.03i 0.13-0.26i 0.07-0.28i
#> -3.76991118430775 0.10+0.13i 0.11-0.03i -0.22-0.06i
#> -2.82743338823081 -0.04-0.15i -0.04-0.01i -0.24-0.04i
#> -1.88495559215388 -0.07-0.24i -0.15-0.02i -0.13+0.05i
#> -0.942477796076938 -0.02-0.13i -0.29-0.11i -0.14+0.13i
#> 0 -0.05-0.23i -0.31-0.13i -0.14+0.07i
#> 0.942477796076938 -0.04-0.22i -0.21-0.11i -0.04-0.02i
#> 1.88495559215388 0.07-0.11i 0.09-0.10i 0.09-0.05i
#> 2.82743338823081 0.11-0.01i 0.16+0.04i -0.04+0.06i
#> 3.76991118430775 0.18-0.05i 0.18+0.04i 0.03+0.09i
#> 4.71238898038469 0.12-0.02i 0.13+0.10i 0.04+0.39i
#> -1.88495559215388 -0.942477796076938 0
#> -4.71238898038469 0.00-0.06i -0.03-0.15i -0.03-0.03i
#> -3.76991118430775 -0.03+0.13i -0.02-0.04i -0.08+0.01i
#> -2.82743338823081 -0.06+0.00i 0.05-0.01i 0.09+0.04i
#> -1.88495559215388 -0.04+0.00i 0.14+0.05i 0.15+0.19i
#> -0.942477796076938 0.07-0.03i 0.20+0.07i 0.07+0.12i
#> 0 -0.05-0.13i 0.04-0.02i 0.01+0.00i
#> 0.942477796076938 -0.07+0.07i 0.08-0.02i 0.07-0.12i
#> 1.88495559215388 -0.05-0.01i 0.04-0.15i 0.15-0.19i
#> 2.82743338823081 -0.13-0.02i 0.06-0.10i 0.09-0.04i
#> 3.76991118430775 -0.02+0.03i -0.01-0.06i -0.08-0.01i
#> 4.71238898038469 -0.27-0.01i -0.08-0.11i -0.03+0.03i
#> 0.942477796076938 1.88495559215388 2.82743338823081
#> -4.71238898038469 -0.08+0.11i -0.27+0.01i 0.04-0.39i
#> -3.76991118430775 -0.01+0.06i -0.02-0.03i 0.03-0.09i
#> -2.82743338823081 0.06+0.10i -0.13+0.02i -0.04-0.06i
#> -1.88495559215388 0.04+0.15i -0.05+0.01i 0.09+0.05i
#> -0.942477796076938 0.08+0.02i -0.07-0.07i -0.04+0.02i
#> 0 0.04+0.02i -0.05+0.13i -0.14-0.07i
#> 0.942477796076938 0.20-0.07i 0.07+0.03i -0.14-0.13i
#> 1.88495559215388 0.14-0.05i -0.04+0.00i -0.13-0.05i
#> 2.82743338823081 0.05+0.01i -0.06+0.00i -0.24+0.04i
#> 3.76991118430775 -0.02+0.04i -0.03-0.13i -0.22+0.06i
#> 4.71238898038469 -0.03+0.15i 0.00+0.06i 0.07+0.28i
#> 3.76991118430775 4.71238898038469
#> -4.71238898038469 0.13-0.10i 0.12+0.02i
#> -3.76991118430775 0.18-0.04i 0.18+0.05i
#> -2.82743338823081 0.16-0.04i 0.11+0.01i
#> -1.88495559215388 0.09+0.10i 0.07+0.11i
#> -0.942477796076938 -0.21+0.11i -0.04+0.22i
#> 0 -0.31+0.13i -0.05+0.23i
#> 0.942477796076938 -0.29+0.11i -0.02+0.13i
#> 1.88495559215388 -0.15+0.02i -0.07+0.24i
#> 2.82743338823081 -0.04+0.01i -0.04+0.15i
#> 3.76991118430775 0.11+0.03i 0.10-0.13i
#> 4.71238898038469 0.13+0.26i 0.05-0.03i
#>
#> $`B, B`
#> -4.71238898038469 -3.76991118430775 -2.82743338823081
#> -4.71238898038469 0.22 0.37 0.30
#> -3.76991118430775 0.19 0.29 0.24
#> -2.82743338823081 0.14 0.11 0.14
#> -1.88495559215388 0.18 0.16 0.19
#> -0.942477796076938 0.11 0.17 0.17
#> 0 0.18 0.20 0.16
#> 0.942477796076938 0.19 0.15 0.11
#> 1.88495559215388 0.17 0.13 0.12
#> 2.82743338823081 0.18 0.17 0.19
#> 3.76991118430775 0.23 0.18 0.23
#> 4.71238898038469 0.10 0.12 0.37
#> -1.88495559215388 -0.942477796076938 0 0.942477796076938
#> -4.71238898038469 0.15 0.18 0.18 0.20
#> -3.76991118430775 0.11 0.08 0.13 0.13
#> -2.82743338823081 0.06 0.04 0.10 0.14
#> -1.88495559215388 0.13 0.11 0.23 0.21
#> -0.942477796076938 0.14 0.11 0.15 0.20
#> 0 0.16 0.07 0.05 0.07
#> 0.942477796076938 0.26 0.20 0.15 0.11
#> 1.88495559215388 0.32 0.21 0.23 0.11
#> 2.82743338823081 0.38 0.14 0.10 0.04
#> 3.76991118430775 0.32 0.13 0.13 0.08
#> 4.71238898038469 0.39 0.20 0.18 0.18
#> 1.88495559215388 2.82743338823081 3.76991118430775
#> -4.71238898038469 0.39 0.37 0.12
#> -3.76991118430775 0.32 0.23 0.18
#> -2.82743338823081 0.38 0.19 0.17
#> -1.88495559215388 0.32 0.12 0.13
#> -0.942477796076938 0.26 0.11 0.15
#> 0 0.16 0.16 0.20
#> 0.942477796076938 0.14 0.17 0.17
#> 1.88495559215388 0.13 0.19 0.16
#> 2.82743338823081 0.06 0.14 0.11
#> 3.76991118430775 0.11 0.24 0.29
#> 4.71238898038469 0.15 0.30 0.37
#> 4.71238898038469
#> -4.71238898038469 0.10
#> -3.76991118430775 0.23
#> -2.82743338823081 0.18
#> -1.88495559215388 0.17
#> -0.942477796076938 0.19
#> 0 0.18
#> 0.942477796076938 0.11
#> 1.88495559215388 0.18
#> 2.82743338823081 0.14
#> 3.76991118430775 0.19
#> 4.71238898038469 0.22
#>