Let \(\underline{X}=(X_1,\ldots,X_m)\) be a \(m\)-variate point process. For a frequency \(\boldsymbol\omega\), compute its squared magnitude coherence \(\hat{R}^{(a,b)}(\boldsymbol\omega)\) and partial coherence \(\hat{D}^ {(a,b)}(\boldsymbol\omega)\) between two point processes \(X_a\) and \(X_b\) as follows: $$\hat{R}^{(a,b)}(\boldsymbol\omega) = \frac{|\hat{F}^{(a,b)}(\boldsymbol \omega)|^2}{\hat{F}^{(a,a)}(\boldsymbol\omega)\hat{F}^{(b,b)}(\boldsymbol\omega)} \quad \text{and} \quad \hat{D}^{(a,b)}(\boldsymbol\omega) = \frac{|\hat{F}^{-(a,b)}(\boldsymbol \omega)|^2}{\hat{F}^{-(a,a)}(\boldsymbol\omega)\hat{F}^{-(b,b)}(\boldsymbol\omega)},$$ where \(\hat{F}^{-(a,b)}\) is the \((a,b)\)th element of the inverse spectrum estimator \(\hat{F}(\boldsymbol\omega)^{-1}\).
Usage
CohByFreq(
w1,
w2,
sp.est,
type = "partial",
i = NULL,
j = NULL,
sp.IR = NULL,
H.list = NULL,
ppp = NULL
)
Arguments
- w1, w2
Frequency vector (only allow frequency values evaluated in
sp.est
)- sp.est
A list of kernel spectral estimate matrices of the point pattern.
- type
If
type = 'partial'
, compute partial coherence. Iftype = 'normal'
, compute coherence.- i, j
Optional. Index of the multivariate point process.
- sp.IR
Optional. Spectrum estimate of the intensity reweighted process, which is calculated by
IRspec()
. If this argument is specified, thenw1
,w2
,H.list
,ppp
are not required.- H.list
Optional. A list from
Hmatrix()
. This argument is only required ifsp.IR
is unspecified.- ppp
Optional. Point pattern. This argument is only required if
H.list
is unspecified.